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Abstract— Autonomous racing is a challenging problem. In
this project, we develop a 1/10th scale autonomous car able
to safely and reliably navigate a race circuit. The navigation
is achieved using the RGB-D and IMU sensors while employ-
ing multiple ROS nodes for real-time sensor integration and
efficient computation of control actions. We also attempted
to undertake certain performance challenges for the race car
including; taking and landing a jump, avoiding a ball rolling
toward the vehicle, stopping at a stop sign, developing an
accurate sparse map of the race course, and real-time estimates
of the coefficient of friction.

I. INTRODUCTION

Autonomous racing is vital for self-driving research. For
decades, the automotive industry has relied on racing plat-
forms like Indy Racing, F1, etc., for technical advancements
in the field [1].

The advancement in autonomous racing will allow re-
searchers in both academia and industry to develop and
test state-of-the-art safety algorithms and other essential
features which will result in better adaptation of self-driving
technology in the public sector. Also, it may eventually lead
to crucial breakthroughs in the fields of control theory and
sensor fusion, enabling growth of the automotive industry,
while also bleeding the effects to other related fields. An in-
teresting by-product can be the development of autonomous
racing as a sport and we may see events like F1 racing
becoming driverless.

However, the self-driving / autonomous driving field is still
in a nascent stage, and autonomous racing events are still not
organized frequently, hence, most of the community relies on
simulations to test their designs and algorithms. Recently, the
F1tenth autonomous racing platform has become prominent
for testing and evaluation of 1/10th scale autonomous cars
using low-cost hardware [2].

Autonomous racing is challenging. The unique problems
arise mainly from the integration of hardware and software
components. The high-speed operation requires real-time
sensing and computation capabilities which can be difficult
to achieve owing to the presence of uncertainties in sensor
measurements and the limited computation available onboard
the platform. Another important factor is that a race setting
is inherently dynamic and highly uncertain. Hence, the
perception, planning, and action loop needs to be robust and
accurate for the safe operation of vehicles.

In this project, we aim to develop a 1/10th scale au-
tonomous race car that will have the capability to au-
tonomously complete a race circuit reliably. We also plan to
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undertake certain performance challenges for the car includ-
ing; taking and landing a jump, avoiding a ball rolling toward
the vehicle, stopping at a stop sign, developing an accurate
sparse map of the race course, and real-time estimates of the
coefficient of friction.

The paper is divided into seven sections. Sections I and II
introduce the problem and some recent solution approaches.
Section III discusses the platform design and Section IV
presents details of the software implementation. These are
followed by testing and discussion. We conclude the paper
in Section VII.

II. RELATED WORK

A. Overview

There is a lot of literature surveying the developments and
latest methods in autonomous driving [3]. Categories within
autonomous driving literature include perception, planning,
control, system, communication, testing, and human-machine
interaction, with themes such as localization, static and
dynamic object detection, tracking, prediction, decision-
making, and human behavior. There are many datasets pub-
lished for autonomous driving, which have contributed to the
recent advancements in the field. Newer topics that are being
discussed in the field of autonomous driving include ethics
and scenario engineering.
Various end-to-end frameworks have been proposed for au-
tonomous racing, which is considered a special case within
autonomous driving. A framework [4] proposed for the F1/10
International Autonomous Racing Competition in Torino,
Italy uses a ROS-based software architecture mounted on an
Odroid XU4 computer and AnyFCF7 board equipped with
a 32-bit micro-controller. The software computes odometry
for mapping and localization using sensor data from lidar
and IMU. The hardware and software setup in this paper is
similar to the setup for our project. DeepRacing is an end-to-
end framework training autonomous racing algorithms in a
simulation environment [5]. It integrates a CNN with LSTM
cells and represents spatial-temporal states with optical flow.

B. Perception

Perception is the key upstream component in autonomous
driving systems. Most autonomous systems perform percep-
tion by receiving sensor data and generating vehicle status
and spatial models. Perception includes a few stages: sensing,
localization and mapping, and object detection [6].
Sensors can be categorized as proprioceptive sensors for
sensing the state of the vehicle, such as IMUs, and exte-
roceptive sensors for monitoring the exterior environment,
such as lidars and RGB cameras. Initially, most autonomous
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vehicles related on vision-based sensors, but in recent years
sensor technology and data processing have improved and
have allowed the use of lidar and radar sensors for self-
driving. The advantage of having a larger suite of sensors is
utilizing the strengths of different sensors to compensate for
their individual weaknesses. In the situation where one sensor
fails, other sensors can be utilized for perception. Another
large task in self-driving perception is integrating information
from multiple sensors. Algorithms such as Kalman Filters are
one way of determining the amount of certainty to assign
to data from each sensor and how much they should affect
localization, mapping, and decision-making.

Object detection algorithms can be dynamic or static.
For example, algorithms for detecting pedestrians and other
moving obstacles are generally dynamic, while algorithms
for detecting road signs and lane markers can be static. Most
traditional obstacle detection algorithms contain two steps:
extracting important features from an image and applying a
learning algorithm. One of the most widely used features in
object detection is a histogram of oriented gradients (HoG),
which calculates normalized local histograms of image gradi-
ents and is computationally efficient. Object detection often
relies on accurate depth information from lidar sensors. Other
approaches have also been introduced, such as estimating
depth through stereo images captured by pseudo-lidars [7],
which are cheaper and sparse lidar sensors. With the massive
development of neural network-based vision methods in
computer vision, CNN is widely used in object-detection
tasks in autonomous driving [8].

C. Decision Making

There are a variety of approaches to decision-making in
autonomous systems. Different approaches are also often
applied to different parts of the decision-making processes
and integrated into the same system.
State machines are a common approach to decision-making.
Most autonomous driving systems implement state machines
in parts of their system to transition between different tasks.
State transitions are generally triggered by perception, such
as object detection and terrain identification. One proposed
vehicle system integrates a motion finite state machine and a
control finite state machine [9]. The two finite-state machines
allow the system to respond flexibly to driving in urban
environments.
Motion planning is a subtask of decision-making. Common
planning methods include graph-based methods, sampling
methods, optimization, and deep-learning based methods.
One challenge to solve in decision-making for autonomous
vehicles is collision avoidance. One proposed approach for
personalized collision avoidance is to approach trajectory
planning as optimal control by transforming the requirement
of passengers into performance index constraints [10].

D. Control

Proportional-Integral-Differential (PID) controller [11] is
a classic control approach that adjusts parameters through
feedback control. PID controllers can be used for tasks

such as line-following, speed adjustment, flight control, and
more. PID controllers are linear, thus not the most suited
for extremely nonlinear systems. Alternatives to PID control
are fuzzy control which adds nonlinearities using rules and
fuzzy membership functions to the control logic.

III. DESIGN

A. Hardware

The following equipment was utilized for the project:
• ODROID XU-4 with 2GB memory
• Intel RealSense D435
• 1/10 AMP MT 2WD Monster Truck RTR ECX03028T2
• Mini Maestro 18-Channel USB Servo Controller
• Adafruit IR Distance Sensor GP2Y0A710K0F (qty: 1)
• PhidgetSpatial 3/3/3 Basic 1044/1
• 64GB eMMC 5.0 Module XU3/XU
• 7.2V 1.8A Ni-MH battery
• 11.1V (3S) LiPo Battery

B. Electronics/power system design

To enable autonomous control of the vehicle, a robust set
of electronic and electrical components must be deployed.
The electronic sub-system includes a power supply, speed
and servo controllers, sensors, and onboard processing. The
overall wiring diagram is as seen in Figure 1.

The power supply consists of 2 sources: A 11.1V (3S)
LiPo Battery, and a 7.2V 1.8A Ni-MH battery. The Ni-MH
battery is used to power the electronic speed controller, the
rear drive 12T 550 DC motor, servo motor for front drive
and the servo controller board. The LiPo battery is used to
power the processing unit, Odroid XU4 and the Realsense
camera for vision.

An LM2596 step-down converter was used in order to
supply the required 5V to the processing board.

To enable the robot’s autonomy, a sensing/feedback
option was deployed in the form of a depth camera,
driven/monitored by the Odroid. The Odroid receives and
sends signals to and from the camera and the Pololu servo
controller via USB.

C. Mechanical Design

The requirements for the mechanical design involved the
design and manufacture of the mount for the Intel real sense
depth camera and also a platform that can be placed on the
chassis which can hold the Odroid, IMU, and the mount for
the depth camera. The chassis already came with a bumper,
so, building a bumper was not necessary. The platform was
made out of an acrylic sheet which was then laser cut to the
appropriate shape and the mount for the depth camera was
3D printed using PLA filament. The CAD models for the
mount and the platform are given below.

IV. METHODS

The challenges we approached are the following:
• Taking and landing a jump
• Avoiding a ball rolling toward the vehicle
• Stop at a stop sign
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Fig. 1: Wiring Diagram

Fig. 2: The platform for the chassis

• Developing an accurate sparse map of the race course
• Real-time estimates of the coefficient of friction
The code architecture is defined by taking the challenges

in mind. The high-level architecture is shown in figure 4.
Each box in the figure represents a ROS node and the ar-

rows demonstrate the publisher-subscriber relationship. The
blue boxes are our sensor inputs, the pink boxes represent the
low-level strategic planning, and the yellow box represents
the node that controls our Maestro Pololu. A summary of
our code architecture is presented as follows:

Our vehicle is equipped with a spatial Phidget and an Intel
RealSense depth camera sensor. Hence, we have two ROS
nodes that publish IMU and depth sensor data. The published
depth data is analyzed in the Depth Analyzer node and is
converted to meaningful data which will be used later in our
planning algorithm. The Friction Coef node uses the data

Fig. 3: Mount for the Real sense depth camera

published by IMU and the Depth Analyzer to calculate the
friction coefficient by moving the car. Ball Detection and
Stop Detection nodes subscribe to the Depth camera node
and publish whether they detected a ball and a stop sign
respectively. Auto Drive node subscribes to Depth Analyzer
and publishes the corresponding commands to move the
car. Stop at Sign is similar to Auto Drive however it also
subscribes to the Stop Sign detection node and will stop at
stop signs. Avoid Ball node subscribes to the Ball Detection
and Depth Analyzer to move the car while avoiding the ball.
All the published planning commands from Avoid Ball, Auto
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Fig. 4: Code Architecture

Drive, Stop at Stop Sign, and Friction coef nodes are read
by the Maestro Control node to publish the corresponding
commands to Pololu Maestro which is connected to our ESC
and Servo.

In the subsequent sections, we will delve deep into the
details. The code is implemented using ROS Noetic and
Python3.6+ on Ubuntu 20.04 LTS.

A. Maestro Control

We created a ROS node that sets the motor speeds
and servo angles, which subscribes to topics publishing
real-time speeds and angles. Our ROS node integrates
FRC4564/Maestro [12], a Python library that supports Pololu
Maestro through USB serial. Before publishing speeds
through the state machine, we send neutral signals to the
motor and servo for three seconds, to calibrate our ESC.
After calibration, our default 0 servo angle is set at -0.23 to
correct a slanted back wheel. Our ESC sends forward signals
to the motor when the speed is positive, and brakes when the
speed is 0 or negative.

B. Sensors Integration

1) RGB-D: We use the realsense-ros [13] library which
launches multiple nodes that publish relevant data from our
Intel RealSense camera including raw image data and depth
data.

2) IMU: We launch the spatial Phidget driver which is
an open-source ros node for Phidgets [14] driver. Phidget22
driver reads data from the IMU Phidget and the IMU node
publishes the 3-axis linear acceleration data in real-time.

C. Depth Analyzer

In order to convert the depth data published by the camera
into meaningful data we created a Depth Analyzer node.
Depth Analyzer reads depth data and generates the distance
to the wall on the left, the distance to the center, and the
distance to the wall on the right.

To calculate the distance to the walls on both sides of the
vehicle, we use the OpenCV [15] library. Using OpenCV, we
create a mask to detect all the depth values that are less than a
certain threshold to make sure we are detecting the side wall
closest to the vehicle, and then we find the largest contours.
As seen in Figure 7, we are able to detect the walls on both
sides of the vehicle. These depth values in these contours are
then used to calculate the average distance from the vehicle
to the wall on the left and the wall on the right.

In order to calculate the center depth values, we use the
average of the depth values in the center of the depth image.

All the published distances are then used later by our
planners to generate appropriate motion planning commands.

D. Stop Sign and Ball Detection

To detect the stop sign we used an open-source Haar cas-
cade stop sign classifier [16] and used the raw RGB images
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Fig. 5: RGB image of a ball

Fig. 6: Detecting a purple ball from raw RGB images

from the Depth Camera node as the input. For ball detection,
we took inspiration from an open-source Python gist [17]
which detects green balls. Our approach involves finding the
corresponding HSV values for our specific colored ball and
then performing a color mask using OpenCV. Figures 5 and
6 show how our code detects a purple ball.

In order to avoid detecting the stop sign and ball too early,
we make sure the detected object is bigger than a certain
threshold.

E. Auto Drive

The auto drive node reads data from the depth analyzer
node and publishes the corresponding Maestro Polulu com-
mands which set the car steering angle and motor speed. In
order to send move commands efficiently, we defined three
motion primitives. Our motion primitives are as follows:

• Straight: Makes sure the car keeps going straight.
• Turn Right: Makes sure the steering angle changes the

car direction elaborately to the right
• Stop: Sends a zero speed and a zero steering angle

command
1) Straight: To ensure that the car travels straight, we

use the simple-PID [18] package. We use the distance to the

left wall and the distance to the right wall and use the PID
controller to try to keep these two values close to each other,
so the error for the PID is quantified as

ε = δright − δleft,

where, ε denotes the error term, and δright, δleft are the
distances from the right and left walls, respectively.

The PID controller will try to minimize the error only if
the error is more than a certain threshold. We then use the
updated PID value to adjust our steering angle. The values
we are using for our PID are p = 0.25, i = 0, and d = 0.
These values were tuned through multiple trials. In order to
travel at a safe speed, we define a fast and slow speed. The
fast speed will be performed when the distance from the car
to the center is more than a certain threshold, otherwise, slow
speed will be performed.

To account for increased left and right depth values which
should be ignored, such as a reflective window or an open
door that shouldn’t be entered, we decrease the error value
by a factor if the sum the the left and right depths are above
a certain threshold.

2) Turn Right: The turn-right command will be triggered
when the distance from the car to the center is less than a
certain threshold. Then it will send a constant turn angle and
constant turn velocity.

3) Stop: The stop will be triggered when we stop the ROS
node. It will set the car speed to zero and the car steering
angle to zero degrees.

A determine state function is written which outputs which
motion primitive should be executed. The straight motion
primitive is executed as long as the distance to the center is
larger than a certain threshold, if it’s not, a turn-right motion
will be initiated. The stop command will be sent if we kill
the ROS node.

F. Avoid Ball and Stop at Stop Sign

The avoid ball and stop at stop sign nodes both use the
same motion primitives as the auto drive node.

1) Avoid Ball Strategy: In order to avoid the ball, when
the ball is detected, we enter the ball-avoidance state where
we send signals for a sharp right turn for a small number of
timesteps, after which we enter the ball-dodging state where
it corrects towards the left for a small number of timesteps.
The right turn is sharp and at a high speed to account for
the velocity of the ball moving toward the vehicle. The left
correction is necessary to avoid crashing into the wall, as the
PID controller does not adjust swiftly enough to steer the car
out of a sharp right turn. The left correction is performed at
a low speed to avoid steering back into the trajectory of the
ball.

2) Stop at Stop Sign: When the car detects a stop sign, it
will send a stop command. The stop command will be sent
for 3 seconds, at which the speed for the motor is set to zero.
After 3 seconds, the car resumes forward movement.
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(a) Depth image (b) Contours

Fig. 7: Side walls detected from depth image

Fig. 8: Calculating speed for a given distance

G. Jump

In order to complete the jump, we tested different motor
speeds for various distances between the ramps. We lined
up the car with the ramp and attempted jump distances
ranging from 0.1m to 1.1m with increments of 10cm. We
recorded the motor speed required to make each distance
and determined a function to calculate the speed based on
the desired jump distance.

The following equation was used to calculate the desired
jump velocity.

νdes = 3× 10−5(δjump)
2 +

3

1000
(δjump) + 0.5277, (1)

where, νdes denotes the desired velocity and δjump is the
jump distance.

H. Sparse Map

Hector mapping[19] is a probabilistic SLAM algorithm
that creates a map of an environment with also tracking the
robot’s position and orientation with it. Hector’s mapping
algorithm is able to provide an accurate and robust mapping
of even unknown environments. Some of the key advantages
of hector mapping are its real-time performance and ability
to handle environments with large portions of the map

Fig. 9: Successful jump for 1-meter distance

occluded. It detects the mapping features such as walls,
corners, and objects. It is capable of generating a map even
without the IMU data, just by estimating the poses using
laser scans.

The Hector mapping generally uses a combination of laser
scan data and IMU readings to create the environment map.
The laser scans measure the distance between the robot and
the objects in the environment, while IMU measures the
robot’s acceleration and rotation. By fusing data from both
sensors, the algorithm estimates the robot’s pose in 3D space.

For generating the sparse map, we used the Realsense
D435 depth images and camera metadata. The depth images
are converted to laser scans and then fed as input to the
hectormap node which generates a 2D mapping of the
EC Hallways (Downstairs). One of the limitations of the
hector mapping is it is unable to perform loop-closures.
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Fig. 10: Race map

Fig. 11: Free-body diagram explaining forces on a tire

Nevertheless, despite only using the depth images and having
our base frame and odom frame set to camera depthframe,
we generate a reasonable structure of the hallways.

I. Friction Coefficient

There are 3 types of friction, rolling, sliding, and static,
and with all these types of friction, there also exist 3 types of
coefficients of friction. In our experiment, we are calculating
the static friction. A wheel or ball on a surface is held there
by static sliding friction. In order to start the rolling motion,
a force or torque must be applied to the wheel. The force
of the static sliding friction prevents the wheel from sliding
and thus initiates the rolling motion. Say, our car has an
acceleration ‘a’ and our wheels don’t slip between the point
of contact of the tire and the surface (road), then we can
represent the forces acting on the surface in Figure 12.

F = Fr

m ∗ a = µs ∗N
The frictional force is represented by Fs which is equal to

the force applied by the tire on the ground when accelerating
by ’a’, but as the weight is distributed between the four
wheels the equation can be written as:

m ∗ a
4

=
m ∗ g ∗ µs

4
The friction node reads the acceleration values published

from the IMU sensor to compute the coefficient of static fric-
tion. In order to compute the coefficient a straight command
is sent so the car starts going straight and can collect multiple
acceleration data. At each time step, the below formula is
used to calculate the friction coefficient [20]:

µ =
ar
g
.

This formula is derived from these formulas:

Fr = µN,

where, Fr is the force required to overcome friction and N
is the total normal force acting on a car. which is mg. We
also know that

Fr = mar,

hence if we put the two formulas together, we get the
coefficient formula as mentioned above. During testing we
estimated the coefficient to be 0.57 for the EC basement
floor.
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V. EXPERIMENTATION

We set up various utilities for the testing process of each
challenge. We had two sets of bash scripts: One set of
launching bash scripts that launch all required rosnodes for
a certain operation or challenge, such as a race launching
script and a ball avoidance launching script; another set
of bash scripts that each launch an individual node. This
setup allowed us to launch operations conveniently when we
needed to, and also launch nodes separately to analyze the
output values of various nodes in real-time.
Besides the rosnodes described in the methods section for
autonomous driving, we have two rosnodes, test servo, and
test motor, for sending manual angle and speed updates to
the odroid in real-time. These nodes were used in testing
to tune angles and speeds for the challenges, especially the
jumping challenge.

The vehicle was rigorously tested in the basement corri-
dors of the engineering center.

The initial tests were aimed at verifying the platform
driving in a straight line. We started by giving fixed torque
inputs to the chassis motor in order to control the vehicle
speed. The next step was making the car stop after a certain
distance/time traveled. Optimizing the motor inputs for this
simple maneuver took a lot of time. Primarily because we
had trouble with the ESC as it was unreliable and resulted in
either no inputs reaching the motor or a considerable delay
before inputs were realizable. This was resolved by replacing
the ESC.

Next was the phase of sensor integration to ensure au-
tonomous navigation. This was primarily achieved using the
RGB-D sensor being mounted at the front of the vehicle
for obstacle detection. The idea was to never allow the
vehicle to drive too close to the obstacles. The integration
was functional for straight-line driving and our car was able
to stop whenever it got close to the walls.

The ability to turn corners was by far the most challenging
phase of the testing regimen. After we tuned the values to
make sure the car stays in a straight line, we tried different
distances to the center values to initiate right turns. One
of the issues that we fixed was that the car was able to
successfully perform a right turn, however, even though it
would enter a straight motion command, the PID controller
was not able to correct the steering angle fast enough and the
car would crash into the wall. In order to fix this, we decided
to take a sharp left turn after performing our right turn, so
our PID controller can safely adjust the steering angle. Once
the vehicle was successfully doing laps we pivoted towards
attempting other challenges.

Since our code architecture was modular, it proved to be
much easier to use the existing code to perform all of the
challenges. The only issue we faced was in the ball detection
challenge. Since we were using a purple ball, our code was
specified to detect balls that have a color ranging between
light purple and dark purple. During our experiments, the
detection algorithm would sometimes detect other objects
that had dark blue colors which would disrupt the planning

decision. In order to fix this issue, we limited the radius of
the detected object and it turned out to greatly improve the
performance.

VI. DISCUSSION

Working with various hardware and sensor inputs poses
a lot of challenges, in this section, we will go over the
challenges we faced and how we overcame them.

A. Versioning

Initially, our eMMc had Ubuntu 18.04 with kernel 4.15
installed on it. We faced a lot of challenges working with
these specific versions. For starters, our WIFI dongle did
not work with that specific kernel version. We also faced
challenges with installing the Intel Realsense version. Since
the WIFI dongle was not working, we had to use a cable
to access the internet on the Odroid. After trying various
methods, we resorted to flashing the eMMC and installing
Ubuntu 20.04 with kernel 5.4. In order to flash the eMMC
we used the Etcher software [21]. After updating our Ubuntu
and kernel versions, we were able to effortlessly use the WIFI
dongle and install various drivers.

B. Servo control and ESC

At some point when working with the ESC, our ESC
stopped receiving commands. We realized that Pololu mae-
stro channels were closing unexpectedly and we were re-
quired to switch channels or restart the Pololu connection
for the ESC to receive signals and power the motor again.
We did not have this issue previously and through exhaustive
tests, we found that the calibration command has changed.
We resolved this issue by sending neutral signals to the ESC
for three seconds every time before starting to send move
commands to the ESC.

Our ESC has two configurations: Forward-Break and
Forward-Break-Backward, however, our motor is unable to
run in reverse when we have the Forward-Break-Backward
configuration.

C. Calculating distances from the walls

Working with a real-sense depth camera posed various
challenges. Initially, to calculate the distance from the car
to the wall on the left and right, we calculated the mean
of the depth values on the left and right sides of the depth
image. In our experiments, we realized that these values are
very unreliable and do not represent the true value of the
left wall and the right wall. As a result, our car was not
able to keep going straight and would crash into the wall.
This happened because our PID controller used the distance
to the left wall and the distance to the right wall, to fix its
steering angle, and these values were way off. In order to
fix this problem, we decided to use the contouring method
which was mentioned in the method section, Depth Analyzer.
Using the contour method helped greatly, because instead of
taking the mean of all the values on the left or on the right,
we would first cluster the values that are close to each other
on the left and right side of the image, and after that, we
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would calculate the average. So a lot of noisy data won’t be
considered in the calculation and the distance to the left and
the distance to the right wall will be a lot more accurate.

D. Turning

Turning was a big challenge throughout this project. We
implemented and tested many strategies for turning, however,
it is hard to account for the different spatial configurations
of different turns and avoid making false turns.

Our initial approach to turning was based solely on the
center depth value. The predominant issue we faced is that
the vehicle would not be able to exit the turn state due to
not detecting a high center value for a long enough interval
to successfully exit the turning state. Other issues we faced
were making turns when the vehicle was angled towards a
sidewall and perceiving it as an approaching front wall.

To account for these cases, we changed to initializing the
turn based on the center, left, and right depth values, which
reduced the turn time and reduced false turns but were not
able to avoid them completely.

We also experimented with setting the turn state for a set
time interval and correcting towards the other direction after
turning.

E. IR sensor

We were interested in using the IR sensor to augment our
RGB-D one, especially for near obstacle detection accuracy.
In order to use the IR sensor, it needs to receive a 5V
input. However, Odroid only supplies 1.8V. So, we decided
to connect the IR sensor to one of the channels on Maestro
and configure that channel to be an input channel. We were
able to read IR sensor values from Maestro Control Center,
however, the values turned out to be unreliable. Particularly,
the data received had a high uncertainty and it was difficult
to ascertain obstacle distance. We thought about designing a
custom filter to make it work. But, the connectivity was very
intermittent. Hence, we ended up not using it at all.

F. Hardware

Although the hardware setup seemed quite straightforward
for this project, there were a few challenges. Initially, we
opted to use 2 NiMH batteries, to power the Odroid and the
drive subsystem separately. However, we noticed a very high
discharge rate of the battery due to the Odroid’s high current
requirements. Then we switched to a 3S LiPo battery for the
Odroid and continued to use the NiMH for the drive.

We also faced issues with the electronic speed controller.
At first, the servo controller rails were powered by another
battery. However, this caused damage to the ESC. We then
realized that the ESC back-powers the servo controller and
this extra voltage might have caused the ESC to malfunction.
Although the ESC is technically able to operate with a 2/3S
LiPo battery as well, we opted to use an NiMH as it seemed
to be charging quicker and was more stable for the purpose
of the drive subsystem.

Throughout the project, due to electronic complications,
we switched two ESCs and one servo motor. As we were

unable to use the full range of the servo while testing on the
track, we decided to test the servo motor with an Arduino
and observed that the motion of the shaft was very stiff and
restricted. We attributed that to a broken gear and tried to
replace the motor.

However, the servo motor was permanently fixed to the
base forcing us to switch to an entirely different chassis. This
switch had to be made only three days before the final.

VII. CONCLUSION
The development of an autonomous vehicle proved to be

a difficult problem with unique challenges. The hardware
and software integration was a major hurdle due to the
uncertain nature of sensors and the varying responsiveness
of the motors. We were successful in using the RGB-D and
IMU sensors by writing multiple ROS nodes for real-time
sensor integration and vehicle control.
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APPENDIX1:HUMAN-ROBOT INTERACTION WITH
AUTONOMOUS VEHICLES

Human-robot interaction (HRI) is a critical area of re-
search in the development of autonomous vehicles. As the
technology behind autonomous vehicles continues to ad-
vance, it is increasingly important to ensure that humans can
interact with these vehicles safely and effectively.

In this report, we will begin by defining Human-Robot
Interaction and then explore its crucial role in the context of
autonomous driving cars.

A. Human Robot Interaction

HRI is an interdisciplinary field at the intersection of arti-
ficial intelligence and computer science, as well as cognitive
science, psychology, and social science [22]. HRI involves
interaction between humans and robots in a shared space.
Some examples of these robots include:

• Industrial Robots: Amazon Robotics uses multiple
warehouse robots, some of which are still prototypes
but they all show promising potential [23]. Some of
these robots include pinch-grasping robots that perform
quickly moving an item without damaging it. One other
robot is Sparrow, which uses computer vision to detect
and select from multiple products.

• Social Robotics: The feature that separates social
robotics from other robots, is that their design is focused
on encouraging human interaction with them. They
can come in different shapes and they usually have
approachable and affable statics [24]. Social robots can
be used to help children build social skills, they can
also be used to help with education and provide a
personalized learning experience.

B. Potential of Autonomous Vehicles

Autonomous vehicles have immense potential for revolu-
tionizing society in general and the field of transportation
in particular. There are several aspects of HRI that can be
enhanced by autonomous vehicles. Primarily the vehicles, if
designed well, promise adherence to traffic laws and ensure
precision driving. This will not only affect the behavior of
human drivers positively, but also the passengers of these
vehicles will have a more leisurely commute.

Another aspect is accessibility. The concept of driverless
vehicles will provide transportation services to individuals
who are unable to drive. They may include the differently-
abled and the elderly.

A promising direction is the use of autonomous vehicles
to improve social interaction. The vehicles me be equipped
with external interfaces and displays to engage with peo-
ple; both other drivers and pedestrians. For example, an
autonomous ice cream truck may have interfaces designed to
give children easy transactions and an enjoyable experience
while purchasing treats. The displays may also be employed
for advertising, conveying public service announcements, or
streaming events. The possibilities are endless.

1) Safety: Ensuring the safety of human drivers, passen-
gers, and other road users is a critical challenge in the devel-
opment of autonomous vehicles. HRI research must address
issues related to safety, such as how to avoid collisions,
how to handle unexpected situations, and how to ensure the
vehicle can be safely operated in all conditions. [25]

2) Trust issue: One of the primary concerns in HRI with
autonomous vehicles is the issue of trust. Studies have shown
that humans tend to be more hesitant to trust autonomous
vehicles than they are to trust human drivers. This lack of
trust can lead to issues such as over-reliance on manual
control, which can reduce the effectiveness of autonomous
systems.

3) Effective communication: Another key issue in HRI
with autonomous vehicles is the need for effective commu-
nication between humans and the vehicle. In order to ensure
that humans can understand the behavior and intentions of
the autonomous vehicle, it is important to develop effective
communication systems that can provide feedback to the
human driver.

4) Privacy and Security: As autonomous vehicles collect
and transmit data, it is important to address issues related
to privacy and security. HRI research must consider how to
protect personal data and how to ensure that the vehicle’s
systems are secure against hacking and other forms of cyber
attack.

5) Ethical Issues: HRI research must also consider ethical
issues related to autonomous vehicles, such as who is re-
sponsible for accidents involving autonomous vehicles, how
to ensure the equitable distribution of benefits and risks, and
how to ensure that autonomous vehicles are used in an ethical
and responsible manner.

C. Prediction Intent

An autonomous-driving car should be able to process
all of its sensory inputs into meaningful data that can be
used to drive safely. Autonomous driving cars are equipped
with various sensors including Cameras, Radars, Lidars,
Ultrasonic sensors, GNSS, angle and torque sensors and etc.
[26] They should be able to process all the data published
from these sensors in a timely manner so they will be able to
make decisions such as not colliding with moving obstacles,
such as other cars or pedestrians, or when to stop at a stop
sign and etc.
A very challenging topic in prediction is predicting human
intent. Because humans are very unpredictable, and if the
car doesn’t react safely in a timely manner, disaster could
happen. The current methods for predicting human actions
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in autonomous vehicles rely heavily on information gathered
from sensors. However, there are certain factors that can
shape individual behavior, which cannot be detected by
sensors or by observing human gaze or arm movements.
While these methods may work for predicting the actions
of an industrial robot worker or the movements of children
at home to avoid collision with a service robot, they are not
sufficient for self-driving cars. Often, a person’s actions may
not even be clear to them, making it difficult for autonomous
vehicles to predict their next move. Even if a pedestrian
is visible to the car’s camera and walking at a particular
speed, humans do not always follow traffic rules in the same
way.[27]
Autonomous cars should also be able to comprehend data the
same way humans do. For example, the way that we avoid
obstacles on the road is different than how we avoid humans
on the road. If we see a human on the road, we usually wait
for them to finish passing the street, however, when we pass
by a loose object on a freeway, we don’t stop and instead,
we try to go over it or change lanes.

Teaching autonomous cars to process data the same way
as humans do, is an active area of research and is one of the
important factors in making autonomous driving cars more
safe and robust.

D. Driving Style Prediction

Predicting driving style can help autonomous cars in sev-
eral ways. By analyzing data on how human drivers typically
navigate the roads, an autonomous car can make more in-
formed decisions and adjust its driving style accordingly. For
example, if the car detects that a driver typically accelerates
quickly from stop signs, it may be able to anticipate this
behavior and respond accordingly. This can help improve
the car’s overall efficiency and responsiveness, which can
be particularly useful in situations where the car needs to
make split-second decisions to avoid accidents. Additionally,
by predicting driving style, autonomous cars may be better
equipped to communicate with human drivers on the road.
For example, if the car detects that a driver is hesitant or
nervous, it may be able to adjust its driving style to help the
driver feel more comfortable. This could involve things like
adjusting the car’s speed or giving the driver more space on
the road.
In this paper [28], they present a deep neural network
architecture to learn driving style from trajectory data. Their
model is inspired by convolutional recurrent neural networks,
and they aim to enhance the model by identifying semantic
patterns in trajectories and encoding the dependencies be-
tween these patterns. They discuss that deep learning models
can be very useful in determining driving style however,
geolocation bias can pose a challenge when designing frame-
works based on data with spatial information, and the use of
such data may not always be unbiased. For some people
starting to drive in a different city or another country may
pose a challenge. Different traffic rules can take time to
adjust, for example, in Britain, the traffic law is to drive
on the right side of the road whereas in the USA, we

should drive on the left side of the road. Different behavioral
expectations also play a big role. Ozkan et. al. [29] performed
a comparison of driving in six different countries. They found
that in some countries is more probable to break traffic laws
and drive more aggressively.

E. Integrating human-style driving in autonomous vehicles

For autonomous vehicles to become widely adopted, users
must feel comfortable with them. By replicating human-style
driving, autonomous vehicles may feel more familiar and
intuitive to users, increasing their acceptance and adoption.
If humans don’t feel comfortable with the way their car
behaves, they would switch to manual control and that
would defeat the purpose of autonomous car production.
Driving styles have been shown to make a big impact on
the acceptance and adoption of autonomous vehicles. One
study presents an approach that encodes human driving styles
[30], such as aggressive, neutral and defensive driving styles
in autonomous driving systems. They use a penalty structure
and evaluate against a set of signal temporal logic formula.
One aspect of human-style thinking is known as common
sense, which is an extremely efficient logical inference
made by humans. Many driving decisions humans make
can be contributed to common sense. On the other hand,
autonomous driving technology primarily relies on control
frameworks such as state machines, kalman filters, and
machine learning techniques for decision making, which are
geared towards optimization. While these techniques can
have high success rates, they often produce sequences of
actions that are unnecessarily complex, or spend too much
time coming to conclusions that would have taken the aver-
age human driver almost no thought. the AUTO-DISCERN
system [31] automates commonsense reasoning using answer
set programming and a goal directed system. By doing this,
they develop an autonomous driving system that simulates
how a human driver thinks and makes decisions.
The importance of integrating human-style driving in au-
tonomous vehicles also ties into the larger phenomenon of
the cultural interruption caused by advanced technologies.
Advanced technologies such as drones, autonomous cars and
artificial intelligence are typically designed with a focus on
optimization, without considering human’s cognitive habits
or cultural norms. As these technologies start to be widely
adopted, there is a disconnection between technology driven
behaviors and previous socio-material practices [30]. Inte-
grating human-style driving in autonomous driving allows
more cognitive comfort which encourages human under-
standing of technology. Failing to consider human-friendly
driving practices can instill technophobia and lead to distrust
in technology.

VIII. CONCLUSION

In conclusion, Human-Robot Interaction is a critical aspect
in the development of autonomous vehicles. The ability to
predict and interpret human behavior is a key challenge
in developing effective autonomous driving systems. HRI
research is focused on developing methods that can interpret,
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predict, and mimic human behavior to make self-driving cars
safer and more efficient.
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APPENDIX 2: DEEP LEARNING APPROACHES

The development of GPU parallel processing has had a
significant impact on machine learning research. Initially
limited by the computational capabilities of the test system,
machine learning algorithms are now able to compute trillion
parameters in reasonable amounts of time to efficiently
understand and solve the problems. With the ability to
perform computations in parallel, deep learning techniques
have been able to make significant strides in their ability
to learn and understand complex challenges. This has led
to a rapid expansion of research in many fields, as deep
learning approaches have become more powerful and capable
of solving a wide range of problems across multiple domains.

Some of the major challenges in autonomous driving are
understanding and predicting the environment, such as the
other vehicles, pedestrians etc. In this section, I will briefly
discuss how deep learning has impacted different modules
of autonomous driving cars. Most of autonomous cars have
five modules[32] for the autonomous capabilities to behave
similarly to humans in driving:

A. Perception:

Similar to the human visual cognition system, the per-
ception module is responsible for being able to sense and
be aware of the environment such as detecting stop signs,
passengers, or lanes. This module is the basic block that

influences most of the other modules. So, achieving high
accuracy in the perception challenges becomes crucial for
autonomous systems.

Prior to deep learning, the traditional approaches have
been used to hand-craft different sets of features that are
able to highlight interest regions in the sensor data and
use machine learning approaches at the end of the pipeline.
These features require lots of tuning to solve a particular
task like detecting a ball or a stop sign. Also, these features
can’t be generalized in different scenarios such as changes
in lightning conditions can heavily impact these algorithms.
Deep learning approaches have achieved state-of-the-art per-
formance in these tasks.

Convolutional Neural Networks(CNN)[33] are a class of
neural networks that have been proven to outperform tradi-
tional algorithms for the computer vision tasks like object
detection, object classification, and semantic segmentation.
CNNs are specifically designed to capture useful information
from visual data, such as RGB images. CNNs introduced the
concept of convolutions to neural networks, applying a set of
learnable kernels sliding across each block of the image, to
generate feature maps. Traditional neural networks prior to
CNN are fully connected, where each neuron in one layer has
a connection to each neuron in the next layer. This requires
a lot of computational power and also doesn’t capture local
information in a region in the image. On the other hand,
CNNs are able to effectively capture the spatial information
by the convolutions while only requiring a single kernel(of
max size 11x11). By increasing the number of kernels, it can
capture a larger variety of spatial representations.

Typically, the output from CNNs is fed to a non-linear
activation function (like ReLU), to introduce non-linearity to
capture more complex features and patterns in the data. The
output from the activation function is fed to the Pooling layer
(typically Maxpool layer), to reduce the spatial dimension
while preserving the most important features. CNNs are
translational invariant as the same kernel is used to capture
a feature vector. The process of convolution, non-linear
activation and pooling are stacked one after the other, where
the starting layers capture low-level spatial features like
edges, and lines while the layers at the end capture much
more complex representations, such as digits or objects.

Region-based CNN (RCNN) architectures like Fast
RCNN[34] have achieved a greater improvement in accuracy
for object detection. Fast RCNN proposed a Region Proposal
Network(RPN) that shares convolutional features with an-
other CNN classification network, which finally detects the
objects. As CNNs are only designed for extracting features
from an image, they fail to capture the temporal features
in a sequence of images. Although most advanced archi-
tectures like Transformers outperform compared to CNN
architectures, CNN layers still remain a backbone to these
architectures.

B. Prediction:

The prediction module has the ability to anticipate future
events based on the current perception of the environment. It
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often involves predicting the behavior of the other vehicles,
during lane detection, or the pedestrians crossing the Z-
walking. As mentioned above in the Perception section,
CNN architecture considers only 1 frame to make a decision
such as detecting the object. Most of these tasks require a
sequence of inputs to predict the next action. So, traditional
CNN architectures fail to capture this capability.

Long Short-Term Memory(LSTM) networks are used in
processing sequential data, as they have the capability to
selectively remember or forget the previous states based on
the current state. An LSTM cell has 3 gates: input, output,
and forget. The input gate determines which features of
the input should be stored in the cell, and the output gate
decides which parts of the cell state should be considered for
generating the output of the cell. The forget gate decides on
which parts of the cell state should be discarded, based on the
current state, which allows its unique capability to select the
essential information represented in the temporal sequence.
To have non-linearity, these gates have sigmoid or tanh (-
1 to +1) non-linear activation functions. This capability off
storing the previous inputs and discarding them when they
are not relevant, adds the memory component to the LSTM
cell enabling them to estimate future events. LSTMs can be
stacked to create architecture, which allows for extracting the
higher-level features from the input sequence and can lead
to better performance.

Once the objects like other vehicles and pedestrians are
detected in the perception module, LSTM can interpret the
long-term dependencies effectively to estimate the complex
dynamics of vehicle and pedestrians’ motion, including their
speed and direction. These estimations can be used to in-
terpret whether a vehicle is about to take a right turn or
slow down or a pedestrian crossing the road and use this
information to effectively predict and plan future trajectories.

LSTMs usually take high-level feature representation from
either a CNN or a fully connected layer and try to estimate
the temporal information embedded in those features to make
a decision. Even though LSTMs are effective at short-term
dependencies, they fail to capture the long-term dependencies
of how each input in related to another input in the sequence.
Also, the LSTMs cells have multiple parameters that need
to be trained, which increases the computational complexity
of the model.

C. Localization and Mapping:

Localization is used to determine the position and ori-
entation of the car in the environment, which helps in
navigating and interacting with the environment. One major
challenge in localization is to process large amounts of
sensor data, such as camera images, lidar point clouds,
IMU acceleration, and angular velocities etc. Localization
tasks such as odometry estimation often require long-term
dependencies of the sequences to estimate the current pose of
the system. Transformers[35] can help address this challenge
by understanding the long-range poses in a sequence and
providing a more efficient and accurate representation in
predicting future poses.

First introduced in NLP tasks like Machine translation,
these architectures have been widely adopted in most of
the other challenges, outperforming the existing state-of-
the-art models. One of the major blocks in the attention
module, allows the model to attend to different parts of the
input sequence selectively. This allows each input to have
a mapping of how it related to other inputs in the entire
sequence. With calculating all the possible relations between
each input in the sequence, the computations are expected
to increase, but these relations between the inputs are just
vector computations and can be computed in parallel. This
allows the computational complexity to go very high, even
while capturing all the dependencies in the sequence. These
capabilities can attract the research community to explore
Transformers, replacing the CNN and LSTM architectures.

[36] replaces LSTM used in DeepVO[37] architecture with
transformers to estimate the long-term dependencies between
the images. They used pre-trained feature representations
from Flow-Net, which is better at geometric tasks and fused
the features to the transformer encoder. The self-attention
modules in these transformers are able to understand the
relations between the images in the entire sequence to
estimate the odometry and outperformed the estimating the
state-of-the-art techniques in odometry estimation.

Mapping provides the system with a structured represen-
tation of the environment to plan efficient future paths and
avoid obstacles. Some of the challenges in mapping arise
due to gaps in the sensor data, which creates open spaces
or drastic changes in rotation which makes it hard for the
loop closures. PoinTr[38] is able to effectively reconstruct the
point cloud from the sparse pointcloud, by introducing a new
geometric-aware attention block, which can also capture the
geometric relations of the points in its locality. This research
is now being explored further to fill in the unexplored regions
on the map, allowing to have more information about the
surrounding in planning.

D. Planning:

Being aware of the surroundings and how they might
change, the planning algorithms try to estimate the optimal
high-level trajectory to reach the desired location. THey
typically receive input from mapping and prediction. Tra-
ditional path planning algorithms like RRT, RRT* have been
powerful and flexible to support search and planning in
complex and dynamic environments.

Reinforcement Learning(RL) is a subfield of machine
learning that involves training an agent to learn a policy that
maximizes the reward. In the initial training iterations, the
agent explores all the possibilities of navigation and tries to
maximize only those that result in maximum reward over the
iterations.

[39] proposes an end-to-end Deep Reinforcement frame-
work for autonomous lane maneuvering. They used the RGB
images and Lidar pointclouds to generate a bird-eye (top
angle view) of the surroundings. For training the agent, they
used a variant of Double Deep Q-Network(DDQN) with
input state as bird-eye view, vehicle speed, and acceleration
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along with the current lane and target lane. During training,
the DDQN receives a reward signal that reflects how well
it performed the task i.e reached the corrected lane, and the
weights of the network are updated using backpropagation
to maximize the reward signal.

E. Control:

The control module has two subsystems, mainly the mo-
tion planning and actuation subsystems. Motion planning
subsystems generate a detailed motion plan and generate
control commands with the high-level trajectory from the
planning module, considering the vehicle dynamics, speed,
acceleration, braking etc. The actuation subsystem executes
these control commands and controls the vehicle actuators
like throttle, steering etc.

Instead of mapping these control commands to actuators,
the actual values of the actuators can also be learned using
deep learning approaches. [40] uses an end-to-end framework
to predict the steering angle and throttle from the sensor
data. They use CNN with inputs as images and outputs as a
vector with the control outputs. They tested their approach
on a real car with an electronic control unit (ECU) and a
steering actuator, which outperformed the traditional hand-
crafted feature design algorithms.

F. Conclusion:

One of the main challenges with deep learning approaches
is that they are highly dependent on the data they are trained
for and can introduce additional bias into the system. And
to actually deploy the deep learning approaches in real
world scenarios, these need to be run in real-time. Overall,
deep learning approaches have been better at solving the
most of the challenges in autonomous driving applications.
Further research in this direction can potentially expand the
boundaries of the field, to achieve higher levels of autonomy.
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